
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) 

Model of Computer Architecture for Online Social 
Networks Flexible Data Analysis 

The case of Twitter data 

Romain Giovanetti 
CRISTAL Lab 

University of Lille 
Lille, France 

romain.giovanetti@univ-lille1.fr 

Luigi Lancieri 
CRISTAL Lab 

University of Lille 
Lille, France 

luigi.lancieri@univ-lille1.fr

Abstract—Since several years, there is an increasing interest 
for new services based on the analysis of data coming from online 
social networks. Such services can, for example, provide the e-
reputation of a product or a company, detect new trends in a 
commercial, social or political context, etc. The huge quantity of 
data is an opportunity in term of representativeness but is also 
difficult to manage. Within Twitter, for example, it appears that 
the huge stream of data is, most of the time, incompatible with a 
flexible analysis unless to have high computer resources. The 
only practical solution is often to observe in a static way a limited 
portion of a phenomenon in a limited time slot. This paper is 
devoted to the study of necessary conditions to provide an 
equilibrium between the computer architecture complexity and 
the analysis flexibility.  
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twitter; computer architecture; distributed database; platform 

I.  INTRODUCTION 
The OSNs (i.e., Online Social Networks) are becoming 

more and more central in our society. But, at first, these tools 
were seen as a curiosity by researchers who considered them as 
unimportant or playful. Actually, from their point of view, the 
gain provided by OSNs compared with existing Internet 
services such as email or blogs, for instance, was not clear. 

Over time, the evolution of the socio technical context has 
changed this perception and has resulted in a situation where 
researches related to OSNs have, in recent years, increased 
dramatically, involving many disciplines. In fact, the increasing 
number of users and the democratization of mobile 
technologies make that OSNs’ data are a true mirror of society. 
Indeed, interactions in text mode, image or video show the 
tastes or the concerns of individuals as well as their social, 
political or economic preferences. This is particularly visible in 
the case of Twitter, which produces an, almost immediate echo 
of all important events from anywhere in the world. This 
reactivity appears to be higher than that of the press even if it is 
less structured. For instance, Paul S. Earle and his colleagues 
show that, by using Twitter’s data, about 75% of the 
earthquake detections occur within 2 minutes of the origin time 
[29] (see also [9]). This is considerably faster than seismograph 
detections in poorly instrumented regions of the world. Many 
other studies in the domain of public health, security, economy, 
etc. show that OSNs can be useful, not only to be rapidly 

informed but also in order to provide many details for the 
diagnosis of events, and forecast their evolution. It is also 
interesting to see that the use of OSNs by end users has also 
evolved in parallel. A 2015 report from Pew Research Center 
tells us that clear majorities of Twitter users (63%) and 
Facebook users (63%) now say each platform serves as a 
source for news about events and issues outside the realm of 
friends and family [30]. 

These examples explain why the potential of OSNs started 
to mobilize researchers and businesses, who have seek to 
exploit the wealth of "big data" linked to interactions between 
users. The challenge is as much financial as scientific. On one 
hand financial, because OSNs’ data open the way to 
enhancement of existing functionalities at lower cost. This is 
the case of opinion polls that, in an ideal case, could be done 
without face-to-face interviews, providing a fastest and most 
accurate image of collective opinions. On the other hand 
scientifically, because these data pave the way to forms of 
observation of human behavior unthinkable up to now. All this 
potential is based on the analysis of data related to 
interpersonal acts of communication (tweets, Facebook status 
updates, short videos on Vine, etc.), as well as the context in 
which these communications are carried out (time, localization, 
popularity, etc.). 

Beyond the difficulty inherent in the data analysis, which 
involves skills in social science domain, the features of the 
underlying computers systems also pose many problems. They 
include in particular the constraints of data collection, 
automatic processing of linguistic data, and Human–computer 
interaction (HCI). These constraints arise because the vast 
amount of information generated in real time requires a 
powerful and adaptable computer architecture. Josh James 
summarizes the situation stating that “data never sleeps”, for 
instance, during one minute 347 222 tweets are posted, 4 166 
667 users like something on Facebook, and 1 736 111 photos 
are published on Instagram [1]. In the particular case of 
Twitter, the processing of linguistic data is complicated by the 
low length of status (140 characters) and the high level of noise 
(bad spelling, etc.). The constraints of the user interface appear 
by the need to synthesize the information extracted from the 
analysis. In other words, under what form should be 
represented the information (charts, alerts, etc.) in order to give 
an accurate meaning with respect to the observer's needs? We 
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will see that to highlight an event or a trend, it is necessary to 
take into account, in combination, all of these constraints. 

Most researchers chose the option of collecting tweets 
corresponding to the topic they wish to analyze, at the time 
they need them. For example, when one wants to know the 
public opinion on the brand iPhone, he collects and analyzes 
tweets containing the keyword iphone. In this case, the analyst 
must be patient until enough data have been collected. For a 
trend analysis, it may take several days. If, once this analysis 
obtained, one realizes that it is useful to compare the previous 
results to other smartphone brands, it will be necessary to wait 
again that some new data have been collected. As we can see, 
the problem with such approach is that it inhibits the analyst 
spontaneity. Indeed, he must carefully anticipate requests about 
data that he could need. If during the analysis process, some 
data miss, he could be discouraged to have to wait several more 
days to get them. 

The alternative approach is to broaden the thematic field of 
data to collect. If we take the previous example, one will not 
only collect tweets containing the keyword iphone but also 
those with related words (e.g., phone, smart-phone, mobile, 
etc.). It is possible thanks to associative networks (semantic 
linked words). This approach has many advantages especially 
in terms of comfort since the probability that useful data will 
miss is reduced. But, from the other side, the problem is that 
this option introduces constraints in terms of data load, given 
the multiplication of tweets to collect. In such case, the 
computers architecture should be carefully designed in order to 
sustain this load, not only during the tweets reception but also 
toward the user interface. Indeed, due to the huge amount of 
data, the fact to provide to users a fast and interactive interface 
with comparative graphs can also become a challenge. As an 
example, a database architecture can be from 2 to 10 times 
faster than another [20]. 

The following generic architecture shows the aggregation 
of different elementary features such as collecting, storing, and 
analyzing tweets, and managing the user interface. Beyond the 
sake of combining complementary functions, this generic 
architecture also allows to highlight systemic features that 
emerge from this association. For example, the platform could 
have a degree of autonomy by collecting tweets that have not 
been explicitly requested, but have a chronological or semantic 
link with the initial request. This can be a community link if we 
consider this type of platform can be used by a group of 
analysts. In this case, one of the analysts can anticipate queries 
on topics that might interest his colleagues later. This type of 
functionality is only possible by collecting tweets over a long 
period of time and away from the traditional punctual strategy. 

Fig. 1. A generic architecture for Twitter Data Analytics 

This continuity requires the platform to be the subject of a 
special attention. The architecture and its performance must be 

over-sized. Furthermore, its operation must be monitored in 
order to quickly identify and fix problems that would prevent 
the collecting of data. 

In the following, we describe the main functional blocks of 
this generic platform even if they are not easy to isolate in the 
literature. There is no unified approach in this domain because 
authors are most of the time concerned by the analyze of data 
rather than by the problems of their collecting, their storage or 
the performance of their user interfaces. For example, in many 
cases, modules developed for recovering Twitter’s data have 
been designed to work with analysis tools (e.g., R, RapidMiner 
[19], etc.) or by specifically targeting the storage architecture 
(such as Elasticsearch Twitter River [38]). First, we focus on 
data collecting from Twitter. We describe the form of these 
data and the means proposed by the social network to recover 
them. We then list technical tools for tweets analysis. Next, we 
present a state of the art related to platforms for collecting and 
processing Twitter’s data. The type of database used and the 
features of their user interface are summarized in order to 
highlight their strength and weakness. Later we discuss about 
user interfaces for data analysis. Finally, we present as a case 
study the platform we developed for Twitter’s data analysis. 

II. COLLECT OF TWITTER DATA

Twitter is a free micro-blogging platform, which exists 
since March 21th, 2006 [2]. For now, users publish messages 
(tweets) of a maximal length of 140 characters, but regularly, 
the company questions this artificial limit. Actually, Twitter 
will soften the 140 characters rule soon (may 2016) [39]. This 
debate is not neutral because short messages determine a 
particular use marked by spontaneity and simplicity. The 
popularity of SMS is unwavering on smartphones while more 
advanced forms of messaging are now available. This shows us 
that short messages are more than a fad. The tweets can be sent 
to a private circle of readers but are usually open to the public. 
They are not editable; they can only be removed. Users can be 
their authors; they can retweet them (i.e. cite) or add them to 
their favorites. These actions have been interpreted by some 
authors from a social point of view. The retweet action, for 
instance, can be seen as an agreement, a recommended reading, 
an information sharing, a flattery, a snapshot of an event, a 
payback or a greater exposure [3]. 

In terms of data structure, tweets may contain different 
entities such as a mention of another user (e.g., @userT), a 
marker of metadata (such as "hashtags" like #subject25) or an 
URL that can lead to another OSN, a media hosting service, or 
a website. If an URL targets a media (such as a picture, a video 
or a live stream video), some extra metadata can indicate its 
type or its dimensions. Thus, the media is automatically 
displayed below the tweet as a card [4], saving users to follow 
its URL in a new tab of their web browser. In addition to these 
principal data, an appendix of additional metadata is also 
available. It contains among others the unique identifier of the 
tweet, a geotag, the language of the tweet (automatically 
determined by Twitter [5]), and the number of times the tweet 
was retweeted and favorited [6]. 

Many solutions are available to collect and analyze these 
data. Twitter offers APIs (i.e., Application Programming 
Interfaces) [10] since 2006. The policy of Twitter regarding 
them is that a minority of consumers has a full access to the 
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tweets (Firehose) and the rest has a limited access (Public 
APIs). Both of them provide only publicly published tweets. 

Getting a permission to access the Firehose is practically 
impossible and is often the subject of a private monetized 
contract between Twitter and a big private actor of the social 
analysis world. In recent months, Twitter has taken back hold 
on the Firehose and many companies have seen their access cut 
[36]. 

The restricted access offers two sets of APIs: REST (i.e., 
Representational State Transfer) APIs and Streaming APIs. 
Studies that focus on entities such as hashtags, terms or 
keywords in tweets, tend to use the REST APIs, while studies 
that attempt to observe, for instance, longitudinal of movies or 
politics, use the public Streaming APIs. These APIs are free 
but require a free Twitter account. The data accessible via the 
REST APIs are severely limited because Twitter imposes 
download rate limits divided into 15 minute intervals. 
Similarly, Streaming APIs provide a limited access to the real-
time stream of tweets that represents less than 1% of the total 
flow. From a technical point of view, Twitter uses OAuth to 
provide authorized access to its APIs. The REST APIs are 
based on the client-server model: a connection between Twitter 
and a consumer is dynamically created for each query. 
Conversely, Streaming APIs rely on a continuous connection 
between Twitter and consumers; they are designed to send 
large volumes of data. 

All the scientific works quoted in this paper make use of 
the free restricted access (REST APIs and Streaming APIs). 

III. TWITTER ANALYTICS TOOLS

To show how the initiatives related to the Twitter data 
analysis are many, let us quote the post of Pam Dyer where he 
already identified in 2013, 50 tools, mostly online, for 
analyzing the content of OSNs, among which 20 more 
specifically dedicated to Twitter [21, 22]. It’s interesting to 
note the high volatility of these websites. Indeed, only 6 of 
them are still operational today (March 2016). Many of those 
who are closed invoke a change in the Twitter APIs as the main 
reason of their fate. Beyond that reason, which could be called 
functional, it should also be noted that the economic model of 
these websites is still to be defined. Actually, even in the case 
of Twitter, which has already a very large community of users, 
the viability of the business model is still sometimes debated 
[23]. This explains that, apart from very marginal business 
initiatives, the development tools and the analytics websites are 
primarily related to evaluation projects in academia. 

In general, the collected tweets must be shaped and 
processed to bring out elements of knowledge buried in the, 
sometimes weak, signals and data to reveal trends or alerts. 
Some of these features may be supported by the existing data 
mining tools [7]. However, the form of tweets and their 
associated data (retweets, author’s id, etc.) have specific 
characteristics that imply a mainly linguistic pretreatment, 
especially important if one wishes to make operational data 
analysis (automatic, scalable, etc.). 

These different features are related by data structures and 
high level programming languages. In his book Mining the 
Social Web [11], M. A. Russell explains how to datamine on 
various OSNs using Python as programming language. In the 

chapter related to Twitter, he uses in his demonstrations the 
Python Twitter Tools module [12]. He also addresses the 
analysis of data in various forms but does not mention the issue 
of storage. Even without an external database, the language 
Python allows to export data into text files (such as CSV, XML 
or JSON). Similarly, the book Twitter Data Analytics written 
by S. Kumar [19] addresses the questions of the collecting, the 
processing and the visualization of statistical indicators of 
Twitter’s data. He uses the language Java and associated 
libraries to perform these treatments. 

Beyond the specific application, several developers have 
designed plugins to adapt the existing data mining tools to the 
Twitter APIs. For example, “Analytics module for Twitter” 
allows one to query Twitter directly into Microsoft Excel 2010. 
One can perform analysis like who are the most active users, 
which tweets correspond to a given hashtag or which tweets are 
rather positive or negative [24]. Some authors use the reporting 
features of Google Analytics to track the activity of OSNs and 
especially Twitter [25]. These approaches are particularly 
suited to marketing strategies aimed, for instance, to measure 
the popularity of a product, an event or a TV show. 

To perform more sophisticated analysis, it is more 
interesting to use specialized tools in data mining and statistical 
computing. Most of these tools have a connector that can be 
interfaced with the Twitter APIs. We describe below the open-
source and free tools, but these opportunities also exist for 
commercial products (Matlab, Mathematica, etc.). 

MOA (i.e., Massive Online Analysis) is an open source tool 
specialized in data flow analysis and also allows developing 
recommendations systems [27]. MOA originated in Weka, a 
popular data-mining tool (classification, etc.). These two tools 
offer together great versatility. The MOA Twitter reader 
module allows in particular adapting these tools to the Twitter 
context. In addition to the collecting, it also offers to detect 
changes in real time, such as the identification of terms whose 
frequency changed. It also allows an analysis in real-time of 
feelings. 

RapidMiner is a popular data analysis tools available since 
2006. There are now a free version (on sourceforge.net) and a 
commercial version ($ 2,000). Recently, RapidMiner studio 
offered features for analyzing the activity on Twitter, 
multilingual texts, sentiment, etc. [26] (see also Knime [28]). 

On July 24th, 2009, the twitterR module for R makes its 
first appearance. R is free software for data processing and 
statistical analysis, which implements the programming 
language S. This module is a wrapper for high-level dialogues 
with the Twitter APIs. It simplifies the OAuth authentication 
and transforms S language requests to HTTP REST requests 
[13]. Since February 23th, 2014, it is possible to easily record 
tweets and other information in a relational database 
management system like RSQLite [14]. 

The use of data analysis tools reveals their limits in terms 
of data storage, features and HCI, and can be first exploratory 
steps in the process of designing a data analysis platform that 
will offer more features and will better handle huge volumes of 
data. 
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IV. TWITTER DATA ANALYSIS PLATFORMS

The majority of the available scientific literature on the 
subject reveals that there are many technical solutions to 
recover data from Twitter and many publications make use of a 
relational database to store them. Comparing the different 
architectures that were discussed in the scientific literature is a 
complicated task because studies present their work with a 
variable level of clarity and specificity. Nevertheless, we 
ordered them in two categories according to how they store 
their data. On one hand, we list platforms that rely on a 
centralized database, on the other hand, those that make use of 
a distributed database. 

In March 2009, K. Makice publishes the book “Twitter 
API: Up and Running - Learn How to Build Applications with 
the Twitter API”. He explains how to capture tweets via the 
Twitter APIs using the language PHP and how to store them in 
a MySQL relational database [31]. 

In 2010, R. D.W Perera, S. Anand, K. P. Subbalakshmi 
and, R. Chandramouli present a software architecture for 
developing stochastic models to characterize OSNs [37]. They 
focus on the time intervals between the creation of tweets and 
the frequency of retweets made by a user of the tweets from 
another user. To do so, they make use of the Search API from 
Twitter REST APIs, the languages Python and PHP, and a 
centralized MySQL database. The collecting of tweets is 
written in Python and uses the Twython library. Their capture 
script runs every 5 minutes. In order to determine the location 
of tweets, they employ a Yahoo web service that turns an 
address into GPS coordinates. Captured tweets are stored in the 
MySQL database by extracting their id, their timestamp and the 
id of their author. A PHP application reads and displays the 
contents of the database. 

In early June 2010, M. Mathioudakis and N. Koudas are co-
authors of an article that deals with a two parts application 
(back-end and front-end), which allows highlighting trends on 
Twitter when they occur [8]. The back-end part, written in 
Java, uses the Twitter Streaming APIs to collect data in real 
time and process them later. It stores the captured tweets, with 
all their metadata, in a module called index and sends to a 
bursty keywords detection module a simplified flow that 
contains only the text part of the tweets with their timestamp. 
Once the simplified flow is analyzed and trends are detected, a 
trend analysis module retrieves additional information about 
detected trends from the previously generated index module. 
The front-end part, called TwitterMonitor, lets final users view 
the results. 

In 2012, M. Oussalah, F. Bhat, K. Challis, and T. Schnier 
describe a software architecture that collects tweets sent from a 
predefined geographical area and over a specified period of 
time using the Twitter Streaming APIs. It also performs text 
queries over captured data, and groups them by location [32]. 
Their architecture uses the Python web framework Django 
coupled with Apache Lucene. They are linked to a MySQL 
database in order to have both an efficient indexing powered by 
Lucene and a relational model in conjunction with the cross 
platform side of MySQL. The Twitter4J library is employed to 
collect tweets. To prevent the risk of interruption during the 
collecting, they use two different computers with two different 
operating systems: Microsoft Windows and Apple OS X, 
located in two different places. When the capture is complete, 

the databases produced by both computers are merged without 
redundancy by a simple algorithm. The user interface served by 
their architecture allows users to watch the tweets captured on 
an embedded Google Maps map. To quickly retrieve tweets for 
the map, they are stored in a geographical index. This index is 
based on the joint use of GeoDjango and a spatial database. 
This basic spatial database is a PostgreSQL database with the 
PostGIS spatial extension. It allows querying ranges on 
location points. 

At the end of October 2012, A. Black, C. Mascaro, M. 
Gallagher, and S. P. Goggins describe their architecture, named 
Twitter Zombie, to capture, socially transform and analyze the 
twittosphere. This architecture aims to provide a consistency in 
the results of social sciences and to standardize the data 
collecting in order to be able to reproduce observations 
identically and afterwards [33]. It relies on the Search API of 
Twitter REST APIs and is written in PHP. The collected data 
are stored in a MySQL database. Twitter Zombie retrieves data 
from Twitter by running independent research jobs in 
continuous and on regular basis. Jobs are programmed, 
configured, and stored in a MySQL database. This system is 
launched each minute by the cron Linux scheduler. The scheme 
of the database has been optimized for insertions in order to 
prevent the storage of data to be a bottleneck when an 
important event occurs. This database tweak makes its size 
grows quickly. To build the jobs, they use the advanced search 
page of Twitter’s website because it validates the search 
criteria and produces an URL they can reuse during their calls 
to the Twitter APIs. 

In December 2013, B. Molnar and Z. Vinceller publish the 
results of a comparative study between five architectures 
designed to investigate the OSNs, and propose a new approach 
based on them [18]. They observed that the majority of the 
studied architectures uses open-source software and primary 
data are manipulated either by a central relational system or 
central a NoSQL system, however NoSQL systems store 
documents more quickly. They also noted that the hardware 
architectures rely mostly on "commercial off-the-shelf" 
components. They identified several problems these 
architectures are brought to meet. First, data recovery is often 
limited by the APIs and the technical reception capabilities. 
Second, if a real-time analysis is required, it takes a lot of 
resources to retrieve all the data and analyze them correctly. 
Third, it is difficult to make textual analysis on OSNs because 
there are great differences between them and it requires 
specific routines for each of them. Finally, the link structure 
between messages of OSNs differs greatly from traditional 
website connections and a storage issue arises from this 
difference. It should be solved in a different way, and 
performance and efficiency become central to explore those 
links. To address the performance issues related to time and 
storage, they propose to use HADOOP, a highly scalable 
analytics platform for processing large volumes of structured 
and unstructured data, and MapReduce processes as much as 
possible. 

November 29th, 2011, T. Hoff describes the physical and 
logical architecture used by DataSift [15] to mutualize the 
expensive Firehose of Twitter. They redistribute data to 
developers who can’t afford the cost of the Firehose and the 
charge of having a big dedicated hardware architecture. Indeed, 
at the time, he said accessing to the Firehose was worth $25 
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000 per day for a daily volume of 250 million of tweets. 30 
peoples and 4 years of development were necessary to build a 
system that used 936 processors and many SSDs. The company 
was using C++ for critical components, PHP to provide an API 
to its clients, Java/Scala to communicate with HBase and 
launch Map/Reduce tasks, MySQL, an Hbase cluster (30 
hadoop nodes, 400TB of storage) and Memcached as cache. 
DataSift transformed tweets before they we redistributed, they 
added to them informations such as their language, their 
feelings, the gender of their author and their Klout level (a 
social influence indicator). Customers were billed in real time 
depending on the amount of service used. This service was 
closed August 13, 2015 following the announcement of April 
11th, 2015 about the end of the partnership between Twitter 
and DataSift. [16] 

In 2012, D. Preot¸iuc-Pietro, S. Samangooei, T. Cohn, N. 
Gibbins, and M. Niranjan present the framework they 
developed to efficiently proceed texts resulting from data flows 
of OSNs [17]. This framework provides command line tools to 
treat tweets, already captured, and live flows. It works with 
modules. To deal with the huge amount of data to process, they 
make use of the MapReduce framework to distribute 
calculations and data storage on a cluster of several computers. 
Their idea is to chain analysis tasks in a workflow. Each task 
can add new metadata to the processed tweet but can’t modify 
it or its already existing metadata. At the time of writing their 
paper, they already developed 3 modules for their framework: 
Tokenization, which cuts the text of a tweet and identify 
various entities, Language Detection, which automatically 
detects the language of a tweet, and Stemming, which retrieves 
root words for easier analysis. 

We’ve seen that depending of the goals of the platform and 
its final users’ needs, the type of database employed to store 
data is different. Centralized databases become bottlenecks 
when the number of tweets to save explodes, this case would 
more likely happen when using the Streaming APIs. We’ve 
also observed that platforms offer a variety of user interfaces 
and features. User interfaces play a significant role in the 
designing process of a platform. They are deeply related to the 
analysts’ needs and the possibilities given by the OSNs’ APIs. 

V. USER INTERFACES 
User interfaces are fairly standard and depend on the user’s 

expertise level. We can therefore find search engines type Web 
interfaces [21] with rich refunds [37] such as graphics or word 
clouds. We can also find map-based interfaces [32] or already 
preconfigured interfaces that display results such as current 
trends [8]. Conversely, the analyst will launch guidelines on 
the command line or use environments like R [13] or Weka. 

The design of the user interfaces reveals two issues. The 
first is to identify information to input and to return, and under 
what form. The second is to identify what one seeks to observe 
and translate it into a treatment to be applied to the inputs. 
Depending on the level of expertise of the analyst, this 
treatment will be either flexible or rigid. In general, in the case 
of Twitter, the number of entries is limited to the available 
types of metadata. The current common use is limited to enter 
targeted keywords or hashtags and possibly specify the 
duration of the capture. It is also possible to filter the results 
according to various criteria (e.g., retweets, geographic 

location, time of creation, etc. [17, 22, and 32]) but the use of 
these filters often requires a good level of expertise from the 
analyst. In addition to filters, many various, more or less 
conventional treatments are possible in order to extract 
knowledge from tweets, For instance, it is possible with a 
suitable language processing to identify the polarity of a tweet, 
the gender of its author and his age, or even his socio-economic 
categories. These treatments are complex and the results are 
sometimes very rough, but they allow understanding the tweets 
from new angles. These operations primarily based on 
language processing have yet to be discovered or improved 
(see the features of data mining tools). 

The results to return and their forms remain a relatively 
open question. A simple and classic level of use is the 
quantitative representation. We can, for example, visualize the 
popularity of an event by counting the number of tweets and 
retweets related to a specific hashtag, either instantly or by 
representing its evolution over a period of time in the form of a 
curve. We can also carry out this measurement in comparative 
form, for instance, if one wishes to compare the popularity of 
both politicians. Things get complicated if you want to add 
more dimensions to the analysis because in this case, the 
classical representations lose of their readability. For instance, 
the representation of the opinion over a period classified by 
genders concerning the individuals who are candidates in an 
election is a real headache in terms of representation. 

The user interfaces also provide management capabilities, 
monitoring, security management, etc. This is particularly true 
in the particular case of platforms that make use of distributed 
database and are often stored in cold and remote areas.  

VI. CASE STUDY

According to figure 1, we designed a partially distributed 
architecture based on the Twitter Streaming APIs to offer a 
SaaS (i.e., Software as a service) to scientists and 
policymakers. Our platform allows longitudinal studies of 
various subjects in near real time. Users can specify the words 
they are interested in. Our system merges all their wishes in a 
list of keywords to track and sends it to the Streaming APIs as 
parameter. Plus, we cover a large spectrum of topics thanks to 
associative networks. Thus, we offer a high level of flexibility. 
Generally, to start querying our service, users don’t have to 
wait while data are collected because data are already 
collected. 

We use as data storage the distributed search engine 
Elasticsearch. It is based on Apache Lucene and is open source. 
This technological choice has several advantages for collecting 
tweets. Firstly, it tokenizes the tweets during their indexing, 
allowing us to have real-time and full-text search capabilities. 
Thus, we can observe trends in real time through our user 
interface. Secondly, Elasticsearch maintains updated replicas of 
shards of the tweets index to prevent an eventual data loss 
caused by hardware failures. Thirdly, when the number of 
tweets sent by Twitter APIs increases sharply, it is crucial to 
have a system that is very quick to perform inserts in order to 
avoid to be disconnected [40]. Elasticsearch shows up to two 
times faster than MySQL for data insertion [20]. Finally, 
tweets sent by Twitter APIs are JSON objects that 
Elasticsearch can index without conversion thanks to its JSON 
document-oriented side. Elasticsearch also supports plug-ins. 

681



We used to collect tweets with the plug-in Twitter River, but 
we recently replaced it with a homemade Python service, 
which uses the Tweepy library, because river type plug-ins 
were removed in Elasticsearch 2 [34]. The interactions with 
Elasticsearch rely on HTTP REST requests and queries are 
JSON objects, so Elasticsearch is developer friendly.  

We use a total of 5 computers to operate our architecture (2 
x Intel Xeon 6 cores @ 3.20 GHz, 1 Intel Xeon 4 cores @ 2.66 
GHz, 1 Intel Xeon 4 cores @ 2.4 GHz, and 1 Intel Core 2 Quad 
Q9650 4 cores @ 3.00GHz). We currently have a storage 
capacity of 12TB disk and 100GB RAM. Among our 5 
computers, 4 are on a private local network and play the role of 
nodes in our Elasticsearch cluster. One of them also runs our 
services. The computer number 5 can be reached from Internet 
and serves as front-end and security gate to our data. Our 
architecture has the advantage of being scalable. To expand its 
hardware capabilities, we can easily add one or more 
computers to our Elasticsearch cluster. However, to do so we 
need to reindex all the data to create enough shards of the 
current tweets index in order to populate all the freshly added 
computers with them. But eventually, the reindex process is 
performed without having to stop the cluster and is transparent 
for users of our SaaS. 

Like we started to mention them above, our platform is also 
composed of homemade services, they are all written in Python 
and use the official Elasticsearch library. One of them ensures 
that the recovering of tweets is not faulty. If this is the case, it 
tries to revive in autonomous way the collecting service and 
notifies administrators that something went wrong. Having a 
reliable capture is necessary to obtain accurate results for 
longitudinal studies. Some others services are related to data 
analysis. They compute new data from tweets and add them to 
the tweets’ metadata. The provided new data are for instance 
the gender of authors or the polarity of tweets. Finally, we also 
created some services to build and manage caches of buzzing 
words in order to speed up the buzz observatory of our SaaS. 

Scientists and policymakers use our platform through a web 
application that consists in a server part (back-end) powered by 
Node.js and a client part (front-end) written mostly using 
AngularJS and jQuery. The server side of this app is primarily 
a security layer between the Elasticsearch cluster and 
connections from the Internet. The client side (front-end) 
provides several tools to end users like a comparative tool with 
charts, words clouds, a buzz observatory, etc. When the front-
end needs to load or refresh an AngularJS directive (e.g., a 
chart, a list of tweets, etc.), the request is transmitted to the 
server side. Then, the server queries the Elasticsearch cluster 
and during that time, it performs requests from other users until 
it finds no other task to do. There is no blocking process thanks 
to the mass use of callback functions.  

We evaluated the performances of our SaaS using the 
following method. We opened the comparative tool of our 
front-end app with Google Chrome (version 50.0.2661.102) on 
our local network to avoid possible lags from Internet. Each 
time a user enters an expression in the comparative tool with a 
start and an end date, the controller of the tool updates the 
page’s directives’ settings. These updates trigger many queries 
to retrieve all the needed data. We choose the expressions 
“USA”, “Paris” and “You” as unique words and in 
combination for our evaluation. Each evaluated expression 
involves 10 queries and the combination fires a total of 30 

queries. We made use of the Network tab of the Chrome 
Developer Tools to observe when all the queries started and 
when the latest answer arrived. The results are shown in the 
bellow figures 2, 3 and 4. 

Fig. 2. Loading time of the comparative tool with different expressions 

Fig. 3. Number of tweets returned by the queries 

Fig. 4. Number. of tweets stored in Elasticsearch per analysed period 

We could think that the loading time is deeply linked to the 
number of tweets returned by the different queries. However, 
we can see in the figure 2 that the expressions “USA” and 
“Paris” have similar loading times while figure 3 shows us that 
for the 197 days long period, “Paris” returned a number of 
tweets more than 4 times higher than “USA”. Actually, the 
loading time seems to be more influenced by the total volume 
of tweets present in our database (figure 4) than the success 
rate of the queries (figure 3). Eventually, during our evaluation, 
we also observed the following bottleneck. The loading times 
may vary for our users according to the web browser they use. 
Indeed, the maximum number of concurrent Ajax requests is 
differently limited per domain (e.g. 6 requests in Google 
Chrome and 13 in Microsoft Internet Explorer 11 [35]), making 
many Ajax requests wait for empty slots to be sent by the web 
browser while our architecture could handle them.  

Among the tools provided by the front-end is another tool 
called exportation tool that give more flexibility to our users. 
Indeed, it allows reusing our collected data. They can 
download the original tweets enriched with the extra metadata 
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added by our different analysis services, such as the gender of 
authors or the polarity of the tweets. It supports JSON and CSV 
formats and has a control panel to adjust the selection of tweets 
to export.  

VII. CONCLUSION

This article presented the challenges and some possible 
solutions for the realization of a platform for collecting and 
analyzing tweets. Let us note first that such architecture is 
closely linked to the organization of Twitter. Indeed, a simple 
change in the Twitter APIs imposes a change in the collecting 
process of the platform, otherwise the whole system will stop 
working or the results will be corrupted or incomplete. 

Regardless of this, the biggest difficulty is related to the 
power (treatment, storage) necessary to support the Twitter 
Streaming APIs, which send millions of tweets to their 
consumers each day. We saw that some software architectures, 
such as relational databases, are less appropriate than NoSQL 
ones during the data recovering except for short time punctual 
analysis. Plus, distributed databases perform better and prevent 
a data loss thanks to their replicated nature. 

User interfaces play a primary role in the process of 
designing a OSNs’ data analysis platform because they are 
deeply related to the possibilities offered by the OSN’s APIs 
and their limits, the needs of its future users and administrators, 
and the possible fields of data-mining.  

We developed a platform that offers a SaaS. It uses 
associative networks to cover a large spectrum of topics 
because we wanted to anticipate the needs of our users. We 
recover data using Streaming APIs for the reason that they 
allow recovering millions of tweets each day. Furthermore, we 
chose the distributed search engine Elasticsearch to store 
tweets. It provides a distributed database system suited to 
support sudden tweets reception rises while tokenizing tweets 
during their indexing, making queries in near real time 
possible. All these choices were motivated by the will of giving 
always more flexibility to analysts.  

However, even with our over-sized platform and the 
technical choices we made, we’ve seen that the question of 
performance is still valid because we are accumulating day by 
day tweets and over a longer and longer period. Indeed, the 
more we have tweets, the more the performances are low. This 
raises several questions. Should captured data have an 
expiration date and thus reduce the flexibility of the analyst? 
Could a peer-to-peer architecture have a better cost/power ratio 
than already existing platforms? 
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